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Abstract We study a zero-range process where the jump rates do not only depend on the
local particle configuration, but also on the size of the system. Rigorous results on the equiv-
alence of ensembles are presented, characterizing the occurrence of a condensation transi-
tion. In contrast to previous results, the phase transition is discontinuous and the system
exhibits ergodicity breaking and metastable phases. This leads to a richer phase diagram,
including nonequivalence of ensembles in certain phase regions. The paper is motivated by
results from granular clustering, where these features have been observed experimentally.

Keywords Zero range process · Discontinuous phase transition · Equivalence of
ensembles · Metastability · Ergodicity breaking · Granular clustering

1 Introduction

The zero-range processes is an interacting particle system introduced in [29], which has
recently attracted attention due to the possibility of a condensation transition. A prototype
model with space homogeneous jump rates that exhibits condensation has been introduced
in [9]. When the particle density ρ in the system exceeds a critical value ρc, the system
phase separates in the thermodynamic limit into a homogeneous background with density
ρc and a condensate, that contains all the excess particles. This phase transition is by now
well understood on a mathematically rigorous level for general zero-range processes [17],
and has been applied to model clustering phenomena in various fields (see [10] and refer-
ences therein). In one dimension, a mapping to exclusion models gives rise to a criterion for
non-equilibrium phase separation [19]. Further rigorous results on the zero-range process

S. Grosskinsky (�)
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
e-mail: S.W.Grosskinsky@warwick.ac.uk

G.M. Schütz
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
e-mail: G.Schuetz@fz-juelich.de

mailto:S.W.Grosskinsky@warwick.ac.uk
mailto:G.Schuetz@fz-juelich.de


78 S. Grosskinsky, G.M. Schütz

include a proof of condensation even on finite lattices [12], and a refinement of the results
in [17], which implies a limit theorem for typical density profiles in case of condensation
[24]. Regarding the background density as order parameter, it has been shown in a gen-
eral context (including different particle species) that in spatially homogeneous zero-range
processes with a stationary product measure condensation is always a continuous phase tran-
sition [16]. Recently, investigations have been further extended to open boundaries where
particles are injected and extracted [21] and heuristically to various generalized models.
Those include a non-conserving zero-range process that exhibits generic critical phases [2],
zero-range processes with non-monotonic jump rates leading to multiple condensate sites
[28], or mass transport models with pair-factorized stationary measures that give rise to a
spatially extended condensate [11].

In this paper we study the condensation transition in a generalized zero-range process
where the jump rates depend on the system size. The motivation for this study comes from
experiments on granular media reported in [26, 32, 34]. Granular particles are distributed
uniformly in a container which is divided in several compartments. When shaking the con-
tainer, the particles start clustering in some of the compartments and after equilibration,
almost all particles form a “condensate” in one of the compartments. The phenomenon is
robust for a variety of shaking strengths and a gas-kinetic approach lead to a simplified
model equivalent to a zero-range process where the hopping rates depend on the number
of compartments [7, 32–34]. In an alternative activated-process approach it can be modeled
by a zero-range type process, where the jump rates depend on the total number of parti-
cles in the system [4, 23], and both approaches have been summarized in [30]. A heuristic
analysis of the behaviour of the order parameter agrees with experimental observations and
shows that generically the transition is discontinuous and the system exhibits hysteresis and
metastability. This analysis suggests that the discontinuity is due to the dependence of the
jump rates on the total number of particles or the number of compartments, respectively.

To treat this phase transition on a rigorous level, we present a detailed analysis of a sim-
ple prototype model with system-size dependent jump rates, for which we derive results in
the context of the equivalence of ensembles analogous to [16, 17]. From a mathematical
viewpoint our system provides an interesting example, since the origin of the phase transi-
tion is due to a non-standard behaviour of the grand-canonical measures, in particular the
lack of a law of large numbers. This leads to a richer behaviour than in previous models,
which can be fully understood only by studying the canonical measures as well, which is
not the case for zero-range processes with fixed jump rates [16]. The mathematical structure
is also different from standard results on systems with bounded Hamiltonians [8, 31]. We
also show how our findings can be directly generalized to a process where the jump rates de-
pend on the total number of particles, rather than the size of the lattice. To establish the link
between the stationary distribution and dynamics we include a discussion of metastability
and the life times of metastable phases, which are compared to Monte Carlo simulation data.
Our results can be generalized heuristically to a large class of systems, including models of
granular clustering, as is explained in a forthcoming publication [18].

The paper is organized as follows. In the next section we introduce the model and show
its phase diagram, which summarizes our results. In Sect. 3 we study canonical and grand-
canonical stationary measures and the equivalence of ensembles is discussed in Sect. 4. In
Sect. 5 we present results on metastability and in Sect. 6 on the extension to a dependence
on the number of particles in the system. In the discussion in Sect. 7 we give a detailed
comparison with previous results.
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2 Model and Results

We consider a zero-range process on a translation invariant lattice �L of size |�L| = L. The
state space is given by the set of all particle configurations,

XL = {η = (ηx)x∈�L
: ηx ∈ N}, (1)

where the number of particles per site can be any non-negative integer number. With rate
gR(ηx) one particle leaves site x ∈ �L, and jumps to another site y with probability p(y−x).
To avoid degeneracies, we require the jump probabilities {p(x) |x ∈ �L} to be irreducible
and of finite range, i.e. p(x) = 0 if |x| > C for some C > 1. Under these conditions our
main results are independent of the actual choice of p. Since they cover the basic novelties
of the paper, we restrict ourselves to the jump rates of the form

gR(k) =
{

c0, k ≤ R

c1, k > R
for k ≥ 1, g(0) = 0, (2)

where c0 > c1 > 0. The rates are piecewise constant and the location of the jump is given by
the parameter R ≥ 0, which depends on the system size L, such that

R → ∞ and R/L → a as L → ∞, (3)

where a ≥ 0 is a system parameter. The most interesting case we will consider is a > 0,
but we will also discuss a = 0 which depends on the asymptotic behaviour of R as L tends
to ∞. The same model has already been mentioned in [9] for fixed R. There is no phase
transition in this case, but for large R one observes a large crossover, i.e. convergence in the
thermodynamic limit is very slow.

The generator of the process is given by

Lf (η) =
∑

x,y∈�L

gR(ηx),p(y − x)(f (ηx,y − f (η))). (4)

It is defined for all continuous cylinder functions f ∈ C(XL). Since we define the process
only on finite lattices, there are no further restrictions on initial conditions or the domain
of the generator as opposed to zero-range processes on infinite lattices (cf. [1]). We do not
specify the geometry or the dimension of the lattice, since our main results on the stationary
distribution do not depend on these details. The only requirement is that the lattice is trans-
lation invariant, or more generally, φx = const. is the only positive solution to the difference
equation

φx =
∑
y∈�L

φyp(x − y). (5)

Note that no particles are created or annihilated and the number of particles is a conserved
quantity. Under our assumptions on p and g there are no other conservation laws that would
lead to degeneracies in the time evolution.

For fixed L, also R is a fixed parameter and known results on stationary measures for
zero-range processes apply (see e.g. [10] and references therein). The stationary weight
wL

R(η) for this process is of product form,

wL
R(η) =

∏
x∈�L

wR(ηx), (6)



80 S. Grosskinsky, G.M. Schütz

Fig. 1 Stationary phase diagram for generic values of c0 > c1. The four phases F(E) (ρ ≤ ρc),
F (ρc < ρ ≤ ρc + a), F/C (ρc + a < ρ < ρtrans) and C/F (ρ ≥ ρtrans) are explained in the text. Left:
Phase diagram in terms of a (3) and the particle density ρ. Right: Background density as a function of ρ for
a = 0.5. Full lines are stable, broken lines metastable

where the single-site marginal is given by

wR(k) =
k∏

i=0

g−1
R (i) =

{
c−k

0 , k ≤ R

c−R
0 cR−k

1 , k > R.
(7)

Here the empty product (for k = 0) is understood to be unity.
The results we derive in the following sections are summarized in the stationary phase

diagram in Fig. 1 in terms of the conserved particle density ρ and the parameter a (3). In
the fluid phases F(E), F and F/C the stationary measure concentrates on homogeneous
configurations with bulk density ρ. In phase F(E) for ρ ≤ ρc the canonical and grand-
canonical ensembles are equivalent (see Sect. 4), and in phase F/C for ρc + a < ρ ≤ ρtrans

there exists an additional metastable condensed phase, which has a lifetime exponential
in the system size (see Sect. 5). Typical condensed configurations have a ρ-independent
homogeneous bulk distribution with density ρc < ρ, where the excess particles condense on
a single lattice site. In phase C/F , i.e. for ρ > ρtrans, the condensed phase becomes stable
and the corresponding fluid phase metastable. On top of metastability the order parameters
are discontinuous as a function of the density ρ, and therefore the condensation transition is
discontinuous.

3 Stationary Measures

3.1 Grand-Canonical Measures

Since the state space XL is discrete we will identify measures μ({η}) with their mass func-
tions μ(η) in the following to simplify notation. For each R and L there exists a family of
stationary product measures νL

φ,R with single site marginal

ν1
φ,R(k) = 1

zR(φ)
wR(k)φk. (8)

The marginal is well defined for fugacities φ ∈ [0, c1), since the tail behaviour of the sta-
tionary weight (7) is wR(k) ∼ c−k

1 for all fixed R. The single site normalization is given by
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the partition function

zR(φ) =
∞∑

k=0

wR(k)φk = c0

c0 − φ

(
1 +

(
φ

c0

)R+1
c0 − c1

c1 − φ

)
(9)

and the expected particle density under the measure νL
φ,R is given by

ρR(φ) = 〈
ηx

〉
ν1
φ,R

= φ ∂φ(log zR(φ))

= φ

c0 − φ
+

(
φ

c0

)R+1
R + 1 + φ/(c1 − φ)

c1−φ

c0−c1
+ (φ/c0)R+1

. (10)

Note that ρR(φ) is strictly increasing in φ and that for every fixed R, ρR(φ) → ∞ as φ → c1.
So for all densities ρ ≥ 0 there exists φR(ρ) such that the measure νL

φR(ρ),R has density ρ, i.e.
product measures exist for all densities. But the single site marginals of these measures still
depend on R and therefore on the system size L. Since R → ∞ as L → ∞, the marginal
(8) converges pointwise to a simple geometric distribution, i.e. for each k ∈ N,

ν1
φ,R(k) → ν1

φ,∞(k) = 1

z∞(φ)
(φ/c0)

k with z∞(φ) = c0

c0 − φ
. (11)

This convergence holds for each fixed φ < c1, but it is not uniform in φ. The limiting product
measure νφ,∞ is defined for all φ < c0. We denote the particle density with respect to this
measure by

ρ∞(φ) := 〈
ηx

〉
ν1
φ,∞

= φ ∂φ(log z∞(φ)) = φ

c0 − φ
, (12)

and its inverse is given by

φ∞(ρ) = c0
ρ

1 + ρ
. (13)

Since convergence (11) only holds for φ < c1 we define the critical density

ρc := ρ∞(c1) = c1

c0 − c1
< ∞. (14)

Note that with this definition φ∞(ρc) = c1. In the following we summarize some straight-
forward consequences of these definitions.

Proposition 1 For all φ < c1, νL
φ,R → νφ,∞ weakly or, equivalently,

〈f 〉νL
φ,R

→ 〈f 〉νφ,∞ as L → ∞ for all f ∈ C0,b(X)1, (15)

and ρR(φ) → ρ∞(φ). For all ρ ≥ 0 we have

φR(ρ) →
{

φ∞(ρ), ρ<ρc

c1, ρ≥ρc
and νL

φR(ρ),R →
{

νφ∞(ρ),∞, ρ<ρc

νc1,∞, ρ≥ρc,
(16)

1C0,b(X) denotes the set of all bounded, continuous cylinder functions f : X → R. A cylinder function
depends only on the particle configuration on a fixed finite number of lattice sites.
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where φR is the inverse of (10) and the second convergence holds in the weak sense as
in (15).

Proof Equation (11) implies pointwise convergence of arbitrary n-point marginals νn
φ,R and

in general this is equivalent to convergence of expected values of cylinder test functions, as
long as they are bounded. This does not directly imply convergence of the unbounded test
function ηx which yields the density, but ρR(φ) → ρ∞(φ) follows by direct computation
from (10).

Since ρR(φ) and its inverse are continuous for φ < c1 or equivalently ρ < ρc, we have
φR(ρ) → φ∞(ρ). Since φ∞(ρ) < c1 and z∞ is a continuous function, inserting φR(ρ) in (9)
yields as L → ∞

zR(φR(ρ)) = z∞(φR(ρ))

(
1 +

(
φR(ρ)

c0

)R+1
c0 − c1

c1 − φR(ρ)

)
→ z∞(φ∞(ρ)). (17)

Therefore, we have pointwise convergence of the marginals as in (11) and νL
φR(ρ),R →

νφ∞(ρ),∞ weakly for ρ < ρc analogous to above. For ρ ≥ ρc to leading order

φR(ρ) 
 c1 −
(

c1

c0

)R
c1(R + 1)

z∞(c1)(ρ − ρc)
↗ c1 as L → ∞. (18)

Inserting in (9) this yields analogous to (17)

zR(φR(ρ)) = z∞(φR(ρ))

(
1 + ρ − ρc

R + 1

)
↘ z∞(c1) as L → ∞ (19)

so that νL
φR(ρ),R → νc1,∞ weakly. �

Note that by Proposition 1 the density does not converge if ρ > ρc since

ρR(φR(ρ)) = ρ → ρc = ρ∞(c1), (20)

and the variance of ηx even diverges as

Var(ηx) = φ ∂φρR(φ)|φ=φR(ρ) 
 (ρ − ρc)R. (21)

Therefore there is no law of large numbers for the measures νL
φR(ρ),R when ρ > ρc . In par-

ticular one can show the following.

Proposition 2 For each L let ηL
1 , . . . , ηL

L be iid random variables with distribution ν1
φR(ρ),R .

Then

1

L

∑
x∈�L

ηL
x →

{
ρ, ρ ≤ ρc

ρc + a X, ρ > ρc
in distribution, (22)

where X ∼ Poi(
ρ−ρc

a
) is a Poisson random variable.

Proof See Appendix. �

Note that for ρ ≤ ρc convergence also holds almost surely for any construction of the
ηL

x on a common probability space. The interpretation of (22) is that for ρ > ρc a Poisson



Discontinuous Condensation Transition in a Zero-Range Process 83

Fig. 2 (Color online) Properties of fluid and grand-canonical measures for c0 = 2, c1 = 1 as given in (23)
to (26). Left: Pressure pgcan (full red line), pfluid (broken red line) and log zR for L = 2,4,8 (dashed blue
lines), demonstrating the fast convergence to pgcan. Right: Entropy densities sgcan (full red line) and sfluid
(broken red line)

distributed number of sites contributes of order a L + o(L) to the sum. Note that 〈X〉 =
Var(X) = (ρ − ρc)/a in accordance with (20) and (21), and for ρ > ρc + a we have on
average at least one site with ηx 
 aL. This already points to the fact that the behaviour of
the system is non-standard for ρ > ρc .

As noted before, the limiting product measures νφ,∞ (11) exist for all φ < c0 and for
reasons explained below, we call the family of measures {νφ∞(ρ),∞ : ρ ≥ 0} the fluid phase.
The pressure of the fluid phase is given by

pfluid(φ) := lim
L→∞

1

L
log zL

∞(φ) = log z∞(φ) = log
c0

c0 − φ
(23)

and we define the entropy density by the negative Legendre transform

sfluid(ρ) := − sup
φ≥0

(
ρ logφ − pfluid(φ)

) = p(φ∞(ρ)) − ρ logφ∞(ρ)

= (1 + ρ) log(1 + ρ) − ρ(log c0 + logρ), (24)

where the supremum is attained for φ = φ∞(ρ) (13). Note that the fluid pressure and entropy
density are different from the grand-canonical quantities, because zR(φ) = ∞ for φ ≥ c1 (9).
This yields

pgcan(φ) := lim
L→∞

1

L
log zL

R(φ) =
{

pfluid(φ), φ < c1

∞, φ ≥ c1
(25)

and the negative Legendre transform of the pressure is given by

sgcan(ρ) =
{

sfluid(ρ), ρ ≤ ρc

sfluid(ρc) − (ρ − ρc) log c1, ρ > ρc.
(26)

Note that the Legendre transform of the pressure is usually called the free energy density. In
thermodynamics, the free energy F is related to the entropy S via F = U − T S, where U is
the internal energy and T the temperature. Since there is no energy and temperature in our
case, we define the entropy density as the negative free energy density. The functions (23) to
(26) are illustrated in Fig. 2. In analogy to previous results [16, 17] we expect a condensation
transition for ρ > ρc . But the non-standard behaviour of the grand-canonical measures, in
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particular the lack of a law of large numbers (22), will lead to a richer behaviour than in
previous studies, which can be fully understood only in the context of the equivalence of
ensembles. In particular, the grand-canonical approach alone does not provide a complete
picture of the phase transition.

3.2 Canonical Measures

The canonical measures are given by

πL,N := νL
φ,R( . |	L = N) where 	L(η) :=

∑
x∈�L

ηx, (27)

i.e. they are given by a grand-canonical measure conditioned on a fixed number N of parti-
cles. Their mass functions are independent of φ and given in terms of the stationary weights
(6) by

πL,N (η) = 1

ZL,N

wL
R(η) δ(	L(η),N), (28)

concentrating on configurations

XL,N = {η ∈ XL |	L(η) = N}. (29)

The partition function is now given by the finite sum

ZL,N = wL
R(XL,N) =

∑
η∈XL,N

wL
R(η). (30)

In the following we analyze the limiting behaviour of this quantity. In the discussion config-
urations with many particles on a small number of sites turn out to play an important role.
Therefore we define the disjoint sets of configurations

Xm
L,N = {η ∈ XL,N |ηx > R for exactly m sites x ∈ �L} (31)

with more than R particles on exactly m sites.

Theorem 1 Suppose R � logL, i.e. logL

R
→ 0 as L → ∞. Then the limit

scan(ρ) := lim
L→∞

1

L
logZL,N , where N/L → ρ, (32)

exists and is called the canonical entropy density. It is given by

scan(ρ) =
{

sfluid(ρ), ρ ≤ ρtrans

sfluid(ρc) + scond(ρ,ρc), ρ > ρtrans,
(33)

where

scond(ρ,ρc) = lim
L→∞

1

L
logwR((ρ − ρc)L). (34)
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The transition density ρtrans(a) is given by the unique solution of

a = (sfluid(ρc) − (ρ − ρc) log c1 − sfluid(ρ))/ log
c0

c1
, (35)

where ρtrans(a) ≥ ρc + a with equality if and only if a = 0.

Note that with (34) and (7) the contribution of the condensate to the canonical entropy is
given by

scond(ρ,ρc) = −(ρ − ρc) log c1 − a log
c0

c1
. (36)

As a special case, taking a = 0 we have ρtrans = ρc as the unique solution of (35), and
comparing (33) with (26) yields

scan(ρ) = sgcan(ρ) for all ρ ≥ 0. (37)

On the other hand, both entropies are different whenever a > 0.

Proof of Theorem 1 Using (31) we decompose the state space XL,N = ⋃M

m=0 Xm
L,N . The

maximal number M of sites containing more than R particles is certainly bounded by
M =: �N/R�. Notice that M → ρ/a ∈ (0,∞] as L → ∞, and in particular M/L → 0.
We can estimate the number of “uncondensed” configurations where no site has more than
R particles by the following Lemma, which is proved in the Appendix.

Lemma 1 For all L,N ≥ 1 and M as above we have

|XL,N |
1 + (

L+M

M

)
/(L − M)R

≤ |X0
L,N | ≤ |XL,N |. (38)

This includes for all ρ ≥ 0 and N/L → ρ

lim
L→∞

1

L
log |X0

L,N | = lim
L→∞

1

L
log |XL,N | = χ(ρ), (39)

where χ(ρ) := (1 + ρ) log(1 + ρ) − ρ logρ.
Furthermore, if R � √

L, then lim
L→∞

|X0
L,N |/|XL,N | = 1 for all ρ ≥ 0.

Now we split the partition function accordingly

ZL,N =
M∑

m=0

Zm
L,N , where Zm

L,N = wL
R(Xm

L,N). (40)

For the term m = 0 we get with Lemma 1

1

L
logZ0

L,N = 1

L
log(c−N

0 |X0
L,N |) → χ(ρ) − ρ log c0 = sfluid(ρ). (41)

The contributions of the other terms are given by

Zm
L,N =

(
L

m

)
c−mR

0

N∑
k=m(R+1)

c
−(N−k)

0 c
−(k−mR)

1 |X0
L−m,N−k|

(
k − mR − 1

m − 1

)
. (42)
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Here we have chosen m sites on which we distribute k particles such that each site contains
at least R + 1 particles, giving rise to the first and last combinatorial factor. The N − k

remaining particles are distributed on L − m sites such that none contains more than R

particles. The sum can be approximated by an integral and evaluated by the saddle point
method. The saddle point equation reads

log
c0

c1
− L

L − m
χ ′

(
N − k

L − m

)
+ log

k − mR − 1

k − m(R + 1)
= 0. (43)

This has a solution if and only if

N − (L − m)ρc ≥ m(R + 1) or, equivalently ρ ≥ ρc + ma. (44)

In this case, to leading order the solution to (43) is given by

k 
 N − (L − m)ρc (45)

where we have used that m/L → 0 for all m ≤ M . On the other hand, for ρ < ρc + ma

the sum in (42) is maximized for the boundary value k = m(R + 1). We get in leading
exponential order

Zm
L,N 


⎧⎪⎪⎨
⎪⎪⎩

0, ρ ≤ ma(
L

m

)
(

c0
c1

)mc−N
0 e(L−m)χ(ρ−ma), ma<ρ<ρc + ma(

L

m

)
(

c1
c0

)mR+(L−m)ρc c−N
1 e(L−m)χ(ρc), ρ ≥ ρc + ma.

(46)

For ρ > ρc + a we get a rough estimate by adding both cases,

M∑
m=2

Zm
L,N ≤ Z1

L,N

(
L

M

)(
M

L

(
c1

c0

)N−M−R−(L−1)ρc

+
(

c1

c0

)R

CLM−2

)
, (47)

where C = exp((c0/c1)
ρc e−χ(ρc)). Now, to leading order

1

L
log

((
L

M

)(
c1

c0

)R

C LM−2

)

 −M

L

(
1 + log

M

L
+ M

L

)
− logL

L

− R

L
log

c0

c1
+ M

L
logL → −a log

c0

c1
≤ 0 as L → ∞, (48)

since M/L → 0, R/L → a ≥ 0. This holds only if M � L/ logL or, equivalently, R �
logL. Since ρ > ρc + a the first summand on the right-hand side of (47) vanishes with an
analogous argument. Therefore

1

L
log

(
1 +

M∑
m=2

Zm
L,N/Z1

L,N

)
→ 0, (49)

and the only exponential contribution to (47) is given by Z1
L,N . Thus we have, using (46),

lim
L→∞

1

L
log

M∑
m=1

Zm
L,N = lim

L→∞
1

L
logZ1

L,N
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= lim
L→∞

1

L
log

(
L

(
c1

c0

)R+(L−1)ρc

c−N
1 |X0

L−1,(L−1)ρc
|
)

= (a + ρc) log
c1

c0
− ρ log c1 + χ(ρc) = sfluid(ρc) + scond(ρ,ρc). (50)

This is a linear function in ρ with the same slope − log c1 as sgcan(ρ) (26). Note that for
ρ → ∞ the first term (41) behaves as

sfluid(ρ) 
 −ρ log c0 + log(1 + ρ) + 1. (51)

Therefore, whereas for small ρ (41) dominates the partition function, (50) dominates for
large ρ, since it has larger asymptotic slope − log c1 > − log c0. The transition density ρtrans

as a function of a is found by equating both contributions which leads directly to (35).
Differentiating the right-hand side of this equation yields

a′(ρ) = 1 − log
1 + ρ

ρ

/
log

c0

c1
. (52)

Thus a′(ρc) = 0 and a′(ρ) ∈ (0,1) for all ρ > ρc. Since also a(ρc) = 0, (35) has a unique
solution ρtrans(a) ≥ ρc for all a ≥ 0. Further we have

ρ ′
trans(a) = 1

a′(ρtrans(a))
> 1 for all ρ ≥ ρc, (53)

and thus ρtrans(a) ≥ ρc + a with equality if and only if a = 0. �

Now, if a > 0 then M as defined after (31) is bounded and converges to ρ/a, and thus
(47) implies that

M∑
m=2

Zm
L,N/Z1

L,N → 0 as L → ∞. (54)

This is significantly stronger than (48) and it is easy to see that it still holds for a = 0, as long
as R � √

L logL. Thus for L → ∞ the canonical measure concentrates on certain parts of
the state space, and from the proof of Theorem 1 (47) the rate of convergence is faster than
polynomial in L. Therefore we can immediately deduce the following.

Corollary 1 For R � √
L logL we have

ρ < ρtrans ⇒ πL,N (X0
L,N ) → 1, LnπL,N (XL,N \ X0

L,N ) → 0,

ρ > ρtrans ⇒ πL,N (X1
L,N ) → 1, LnπL,N (XL,N \ X1

L,N ) → 0,
(55)

for all n ∈ N as L → ∞ and N/L → ρ.

This implies in analogy to (33), that for ρ > ρtrans a typical configuration consists of a
homogeneous background with density ρc and the (ρ −ρc)L excess particles concentrate in
a single lattice site. We expect this kind of behaviour actually already for R � logL, since
wR has an exponential tail and maximal fluctuations under wL

R in the occupation number
are of order logL. Our estimates are not strong enough to deduce this, but we are primarily
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interested in a > 0, which is covered by the above result. The same is true for the last
statement of Lemma 1.

For ρ = ρtrans the contributions of condensed and fluid configurations to the canonical
entropy are equal (33). This is true on the exponential scale and to deduce the behaviour on
the transition line we need a finer estimate, given in the following theorem.

Theorem 2 For N/L → ρtrans and a > 0 we have

wL
R(X1

L,N )/wL
R(X0

L,N ) = O(L3/2) → ∞ as L → ∞, (56)

which implies πL,N(X1
L,N ) → 1.

So in case of a discontinuous transition (i.e. a > 0) the transition line belongs to the
condensed phase C/F . For a = 0 the transition is continuous and therefore ρ = ρc belongs
to the fluid phase F(E).

Proof According to (42) in the proof of Theorem 1,

wL
R(X1

L,N ) = Lc−R
0

N∑
k=R+1

c
−(N−k)

0 c
−(k−R)

1 |X0
L−1,N−k|

= L

(
c1

c0

)R+ρc(L−1)

c−N
1 |X0

L−1,ρc(L−1)| (1 + o(1))

×
∫ N

R+1
exp

(
1

2
χ ′′(ρc)

L

(L − 1)2
(k − k̄)2

)
dk, (57)

where k̄ = N − (L − 1)ρc + o(L) is the solution to the saddle point equation (43). In ad-
dition to the proof of Theorem 1 we consider the next order of the expansion to get the
correct asymptotic behaviour. Since with Lemma 1, χ ′′(ρ) = − 1

ρ(1+ρ)
< 0 for all ρ > 0

and k̄ ∈ (R + 1,N), the asymptotic behaviour of the Gaussian integral with variance
σ 2 = −L/χ ′′(ρc)(1 + o(1)) is given by its normalization and we get

wL
R(X1

L,N )

= L3/2

(
c1

c0

)R+ρc(L−1)

c−N
1 |X0

L−1,ρc(L−1)|
√

2πρc(1 + ρc)(1 + o(1)). (58)

With C = √
2πρc(1 + ρc) this leads to

wL
R(X1

L,N )

wL
R(X0

L,N )
= CL3/2

(
c1
c0

)R+ρcLc−N
1 |X0

L−1,ρc(L−1)|
c−N

0 |X0
L,N | (1 + o(1))

= CL3/2
(

c1
c0

)R+ρcLc−N
1

(
(L−1)(1+ρc)−1

L−2

)
c−N

0

(
L+N−1

L−1

) (1 + o(1)), (59)

where we have used the third statement of Lemma 1 that holds for a > 0. We use Stirling’s
formula for the binomial coefficients and note that due to Theorem 1 the exponential terms
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in the ratio vanish, which leaves us with

wL
R(X1

L,N )

wL
R(X0

L,N )
= CL3/2(1 + o(1)) → ∞ as L → ∞,N/L → ρtrans. (60)

Together with Theorem 1 this implies that

wL
R(XL,N \ X1

L,N ) → 0 as L → ∞,N/L → ρtrans, (61)

which implies the last statement of the theorem. �

4 Equivalence of Ensembles

4.1 Specific Relative Entropy

In Table 1 we summarize the results of the previous section in connection with the phase
diagram shown in Fig. 1. In particular, for a = 0 the phases F and F/C are empty since
ρc = ρtrans, and we have scan(ρ) = sgcan(ρ) for all ρ ≥ 0 as noted already in (37). This implies
that the canonical entropy density is concave and the condensation transition is continuous.
On the other hand, for a > 0 we have equivalence of ensembles only in phase F(E), the
canonical entropy density is non-concave, and the transition is discontinuous. These results
concern equivalence of ensembles in terms of convergence of entropies of the canonical and
the grand-canonical measure. In Fig. 3 they are illustrated by numerical calculations of the
canonical entropy density using the recursion relation

ZL,N =
N∑

k=0

wR(k)ZL−1,N−k. (62)

As can be seen, the grand-canonical entropy density is equal to the concave hull of scan(ρ)

which itself is not concave for a > 0. The canonical entropy density further coincides with
the one of the fluid phase, up to the point when it becomes metastable and the condensed
phase becomes stable. This point has been derived exactly by studying the dominating terms
in the canonical partition function.

We can make a connection to other formulations of the equivalence of ensembles, using
the specific relative entropy

h(πL,N , νL
φ,R) := 1

L
H(πL,N , νL

φ,R) = 1

L

〈
log

πL,N (η)

νL
φ,R(η)

〉
πL,N

. (63)

Table 1 Summary of the results of Sect. 3: Comparison between canonical and grand-canonical entropy
density. Equivalence of ensembles holds only in phase F(E)

Phase Canonical entropy Grand-canonical entropy

scan(ρ) sgcan(ρ)

F(E) sfluid(ρ) sfluid(ρ)

F, F/C sfluid(ρ)

C/F sfluid(ρc) − (ρ − ρc) log c1 − a log c0
c1

sfluid(ρc) − (ρ − ρc) log c1
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Fig. 3 Canonical entropy density scan(ρ) for various values of c0, c1 and a. Data points are calculated
numerically according to (62) with L = 100 (×), 200 (+), 400 (♦), and show good agreement with the
theoretical predictions for the thermodynamic limit (see Table 1)

With the identity πL
L,N = νL

φ,R( . |	L = N), this can be expressed in two useful forms,

h(πL,N , νL
φ,R) = − 1

L
logνL

φ,R(	L = N) = log zR(φ) − N

L
logφ − 1

L
logZL,N . (64)

The derivation of these expressions is straightforward, see e.g. [17]. The following is a direct
consequence of our results on the canonical measure in Theorem 1.

Corollary 2 Choosing φ = φR(ρ) according to (16) we get for all ρ ≥ 0

h(πL,N , νL
φR(ρ),R) → sgcan(ρ) − scan(ρ). (65)

Proof We use the second expression in (64) for the specific relative entropy. Choosing φ =
φR(ρ), the first two terms converge

log zR(φR(ρ)) − logφR(ρ)
N

L
→ sgcan(ρ) (66)

to the grand-canonical entropy density (26), since with Proposition 1, analogous to (17) and
(19)

zR(φR(ρ)) →
{

z∞(φ∞(ρ)), for ρ < ρc

z∞(c1), for ρ ≥ ρc.
(67)

Convergence of the third term in (64) has been shown in Theorem 1, which finishes the
proof. �
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We can read from Table 1 that

sgcan(ρ) − scan(ρ) =

⎧⎪⎨
⎪⎩

0, ρ ≤ ρc

sfluid(ρc) − sfluid(ρ) − (ρ − ρc) log c1, ρc<ρ<ρtrans

a log(c0/c1), ρ ≥ ρtrans.

(68)

In particular, for a = 0 we have ρc = ρtrans and

h(πL,N , νL
φR(ρ),R) → 0 for all ρ ≥ 0, (69)

whereas for a > 0 this holds only for ρ ≤ ρc . By a standard result [6], convergence in specific
relative entropy implies weak convergence, i.e. convergence of expectations of bounded
cylinder test functions f ∈ C0,b(X),

|〈f 〉πL,N
− 〈f 〉νL

φR(ρ),R
| → 0 as L → ∞,N/L → ρ. (70)

This is another formulation of the equivalence of ensembles.
Furthermore, we can compare the canonical measures with the expected fluid measures

for the background.

Theorem 3 Let a > 0. Choosing φ = φ∞(ρ) according to (13) we get

h(πL,N , νL
φ∞(ρ),∞) → sfluid(ρ) − scan(ρ) = 0 for 0 ≤ ρ < ρtrans, (71)

whereas for φ = c1

h(πL,N , νL
c1,∞) → (ρ − ρc) log

c0

c1
> 0 for ρ ≥ ρtrans. (72)

Now let a = 0 and R � √
L logL. We have ρtrans = ρc and (71) holds for 0 ≤ ρ ≤ ρc, (72)

for ρ > ρc .

Proof According to the definition (63) we have

h(πL,N , νL
φ∞(ρ),∞) = 1

L

∑
η∈XL,N

πL,N (η) log
πL,N(η)

νL
φ∞(ρ),∞(η)

= pfluid(φ∞(ρ))

− N

L
log

φ∞(ρ)

c0
− 1

L
logZL,N + 1

L

∑
η∈XL,N

πL,N (η) logwL
R(η), (73)

where we have used the definitions (11) and (28),

ν1
φ,∞(k) = 1

z∞(φ)
(φ/c0)

k, πL,N (η) = 1

ZL,N

wL
R(η) δ(	L(η),N). (74)

Splitting the last term of (73) and using Corollary 1 we see that

1

L

∑
η∈X0

L,N

πL,N (η) log c−N
0 + 1

L

∑
η∈XL,N \X0

L,N

πL,N (η) logwL
R(η) → −ρ log c0, (75)
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as L → ∞, N/L → ρ, as long as ρ < ρtrans. Therefore, with definition (24),

h(πL,N , νL
φ∞(ρ),∞) → sfluid(ρ) − scan(ρ) = 0 for ρ < ρtrans. (76)

This holds for all a ≥ 0 as long as R � √
L logL. For ρ > ρtrans we also use (73) where

φ∞(ρ) is replaced by c1. Again with Corollary 1 the main contribution to the last term comes
now from η ∈ X1

L,N . The sum can be computed by the saddle point method analogous to the
proof of Theorem 1 and we get

1

L

∑
η∈X1

L,N

πL,N (η) logwL
R(η) → a log

c1

c0
− ρc log c0 − (ρ − ρc) log c1. (77)

The same also holds for ρ = ρtrans, since with Theorem 2 πL,N concentrates on X1
L,N also in

this case. The first terms in (73) are now

pfluid(c1) − N

L
log

c1

c0
→ sfluid(ρc) + ρ log c0 − (ρ − ρc) log c1, (78)

and together with the behaviour of scan from Theorem 1 we get for ρ ≥ ρtrans

h(πL,N , νL
c1,∞) → (ρ − ρc) log

c0

c1
> 0, (79)

finishing the proof of Theorem 3. Note that a = 0 is included as a special case in the above
derivation as long as R � √

L logL. �

Equation (71) allows us to identify the limit measure and we have

〈f 〉πL,N
→ 〈f 〉νφ∞(ρ),∞ as L → ∞,N/L → ρ. (80)

As a direct consequence of the relative entropy inequality ([5], Lemma 3.1), this holds not
only for bounded cylinder test functions f , but for the larger class with 〈eεf 〉νφ∞(ρ),∞ < ∞
for some ε > 0. Since the fluid measures have finite exponential moments, this includes
local occupation numbers f (η) = ηx , which are unbounded. This ensures convergence of
densities for ρ < ρtrans (ρ ≤ ρc for a = 0), i.e. in the fluid phases F(E), F and F/C.

4.2 The Condensed Phase

Formula (72) may suggest that the limiting distribution of the background in the con-
densed phase C/F is more complicated than the expected fluid measure νc1,∞. Together
with Corollary 1 we can show that the non-zero specific relative entropy is only due to the
contribution of the single condensate site and indeed the background distribution is as ex-
pected. In the following we attach some (arbitrary) ordering to the lattice sites and identify
�L = {1, . . . ,L}. On XL−1 we define the measure π̂L,N as a marginal on the first L − 1
coordinates

π̂L,N := πL,N(.|L ∈ argmax)1,...,L−1, (81)

where πL,N(.|L ∈ argmax) denotes the measure πL,N conditioned on the event that ηL ≥ ηx

for all x = 1, . . . ,L − 1. Since πL,N is invariant under site permutations, we have

π̂L,N := πL,N (.|y ∈ argmax)�L\{y} for all y ∈ �L. (82)
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Note that π̂L,N concentrates on a subset of XL−1,

X̂L−1 := {η̂ ∈ XL−1 |	L−1(η̂) < N, η̂1, . . . , η̂L−1 ≤ N − 	L−1(η̂)}, (83)

and in case of condensation it can be interpreted as the distribution of the background.

Theorem 4 For ρ ≥ ρtrans we have as L → ∞, N/L → ρ,

H(π̂L,N , νL−1
c1,∞) → 0, (84)

and thus for bounded cylinder test functions

〈f 〉πL,N
→ 〈f 〉νc1,∞ . (85)

Note that the first statement (84) involves the total rather than the specific relative entropy
and is therefore much stronger than Corollary 2 and Theorem 3. This implies convergence in
total variation norm [5]. Such a result is not possible below criticality, since the conditioning
on the particle number in the canonical measures leads to divergence of the relative entropy.
Above criticality, this condition is accounted for purely by the condensate site and does not
affect the background, which shows the same fluctuations as i.i.d. random variables. Follow-
ing recent results in [24], this enables to show that the stationary density profiles converge
to a Brownian motion with a jump at the location of the condensate. Below criticality the
corresponding expected behaviour would be a Brownian bridge, but there is no proof so far.

The second statement (85) is a direct consequence of the first but not a very strong
one, since it would also follow from convergence in specific relative entropy. The site with
maximum occupation number will be in the support of the cylinder test function only with
probability of order 1/L. But due to this possibility, the test function has to be bounded,
not necessarily by a constant but by a number of order o(L). This excludes f (η) = ηx as
expected, since the expected density does not converge for ρ ≥ ρtrans. Note also that with
(72) and (85) this system is an example where weak convergence is strictly weaker than
convergence in specific relative entropy.

Proof Equations (81) and (83) imply that

π̂L,N (η̂) = πL,N(η̂,N − 	L−1(η̂))

πL,N (L ∈ argmax)
1X̂L−1

(η̂), (86)

where (η̂,N − 	L−1(η̂)) ∈ XL,N denotes the concatenated configuration. By permutation
invariance we get

πL,N (L ∈ argmax) = 1

L
πL,N(X1

L,N ) + R̃L,N = 1

L
(1 + o(1)), (87)

where 0 ≤ R̃L,N ≤ πL,N (XL,N \X1
L,N). So the error is exponentially small in the system size

for ρ > ρtrans (see Corollary 1) and of order L−3/2 for ρ = ρtrans.
Now we can compute the relative entropy

H(π̂L,N , νL−1
c1,∞) =

∑
η̂∈X̂L−1

π̂L,N (η̂) log
πL,N (η̂,N − 	L−1(η̂))

πL,N (L ∈ argmax)νL−1
c1,∞(η̂)
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=
∑

η̂∈X̂0
L−1

π̂L,N (η̂) log
wL−1

R (η̂)c−R
0 c

−(N−	L−1(η̂)−R)

1 LzL−1∞ (c1)

(c1/c0)
	L−1(η̂)ZL,N (1 + o(1))

+ RL,N ,

(88)

where analogous to (31)

X̂0
L−1 = {η̂ ∈ X̂L−1 | η̂1, . . . , η̂L−1 ≤ R}. (89)

Therefore we have

|RL,N | =
∣∣∣∣

∑
η̂∈X̂L−1\X̂0

L−1

π̂L,N (η̂) log
πL,N(η̂,N − 	L−1(η̂))L

νL−1
c1,∞(η̂)(1 + o(1))

∣∣∣∣

≤ CπL,N(XL,N \ (X0
L,N ∪ X1

L,N ))L → 0 as L → ∞, (90)

using Corollary 1 and Theorem 2, since the argument of the logarithm is at most exponential
in L. On X̂0

L−1 we have wL−1
R (η̂) = c

−	L−1(η̂)

0 and thus

H(π̂L,N , νL−1
c1,∞) = πL,N (X1

L,N ) log
(c1/c0)

Rc−N
1 LcL−1

0

ZL,N(c0 − c1)L−1
+ o(1), (91)

where we have used π̂L,N (X̂0
L−1) = πL,N (X1

L,N ). With Theorems 1 and 2 we have for ρ ≥
ρtrans

ZL,N = wL
R(X1

L,N )(1 + o(1))

= L3/2

(
c1

c0

)R+ρcL

c−N
1 |X0

L−1,ρc(L−1)|
√

2πρc(1 + ρc)(1 + o(1)), (92)

and according to Lemma 1

|X0
L−1,ρc(L−1)| =

(
(1 + ρc)(L − 1) − 1

L − 2

)
(1 + o(1)). (93)

A careful application of Stirling’s formula, which was not necessary in the proof of Theo-
rem 2, yields

(
(1 + ρc)(L − 1) − 1

L − 2

)
=

(
c0

c0 − c1
c

ρc

0

)L−1

(2πρc(1 + ρc)L)−1/2(1 + o(1)), (94)

where we have used in the exponential term that ρc = c1/(c0 − c1). Plugging everything into
(91) this leads to a perfect cancellation and we get as L → ∞

H(π̂L,N , νL−1
c1,∞) = πL,N (X1

L,N ) log(1 + o(1)) + o(1) → 0, (95)

which finishes the proof of the first statement.
Let f ∈ C0,b(X) be a cylinder test function bounded by C and supported on the lattice

sites supp(f ) ⊂ N with |supp(f )| = n. In the following let L > max supp(f ) such that
supp(f ) � �L. We have

〈f 〉πL,N
=

∑
η∈XL,N

πL,N (η)f (η) =
∑

η∈X1
L,N

πL,N (η)f (η) + R1
L,N , (96)
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where due to Corollary 1

|R1
L,N | =

∣∣∣∣
∑

η∈XL,N \X1
L,N

πL,N (η)f (η)

∣∣∣∣ ≤ CπL,N(XL,N \ X1
L,N ) → 0. (97)

Since |argmax(η)| = 1 for all η ∈ X1
L,N , we have

∑
η∈X1

L,N

πL,N (η)f (η) = 1

L

∑
y∈�L

∑
η∈X1

L,N

πL,N (η | argmax = {y})f (η)

= 1

L

∑
y∈�L\supp(f )

∑
η̂∈X̂0

L−1

πL,N(η̂ | argmax = {y})�L\{y}f (η̂) + R2
L,N

= L − n

L

∑
η̂∈X̂0

L−1

π̂L,N (η̂)f (η̂) + R2
L,N (98)

due to (82), where boundedness of f implies

|R2
L,N | =

∣∣∣∣ 1

L

∑
y∈supp(f )

∑
η∈X1

L,N

πL,N (η | argmax = {y})f (η̂)

∣∣∣∣

≤ n

L
CπL,N(X1

L,N ) → 0 as L → ∞. (99)

Note that this is the only place where we crucially require that f is bounded by a constant
of order o(L). With Corollary 1 we get

∑
η̂∈X̂0

L−1

π̂L,N (η̂)f (η̂) = 〈f 〉π̂L,N
+ R3

L,N , (100)

where

|R3
L,N | =

∣∣∣∣
∑

η̂∈X̂L−1\X̂0
L−1

π̂L,N (η̂)f (η̂)

∣∣∣∣ ≤ Cπ̂L,N (X̂L−1 \ X̂0
L−1)

= CπL,N(XL,N \ (X0
L,N ∪ X1

L,N )) → 0 as L → ∞. (101)

Together with (84) shown above, this implies

〈f 〉πL,N
= 〈f 〉π̂L,N

+ R1
L,N + R2

L,N + R3
L,N → 〈f 〉νc1,∞ , (102)

since convergence in total relative entropy implies weak convergence. �

5 Metastability

In the previous section the role of the density ρc + a remains open. A first hint appears in
the proof of Theorem 1, where the saddle point equation for condensate contributions (43)
only has solutions for ρ ≥ ρc + a. But in the context of the equivalence of ensembles we are
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not able to distinguish the phases F and F/C in the phase diagram (Fig. 1), as can be seen
in Table 1. A further analysis of the canonical measures in terms of the order parameter of
the model, i.e. the background density ρbg of uncondensed particles, will clarify this point.
Since for a = 0 the condensation transition is continuous, we only consider the case a > 0
throughout this section. We define the observable

	
bg

L (η) := 	L(η) − max
x∈�L

ηx, (103)

which can be interpreted as the number of particles in the background, since at most one site
contributes to the condensate.

Theorem 5 Let S1, S2, . . . ∈ N be any sequence with SL/L → ρbg > 0. Then the limit

Iρ(ρbg) := − lim
L→∞

1

L
logπL,N(	

bg

L = SL) ∈ [0,∞] (104)

exists for all ρ > 0 (N/L → ρ), and defines the rate function for the events {	bg

L = SL}. For
ρbg > ρ, Iρ(ρbg) = ∞ and for ρbg ≤ ρ it can be written as

Iρ(ρbg) = scan(ρ) − sfluid(ρbg)

+
{

(ρ − ρbg) log c0, ρbg ≥ ρ − a

(ρ − ρbg) log c1 + a log(c0/c1), ρbg ≤ ρ − a.
(105)

Proof For ρbg > ρ, SL > N eventually and thus πL,N (	
bg

L = SL) = 0 eventually. For ρbg ≤
ρ we use the identity

πL,N = νL
φR(ρ),R( . |	L = N) = νL

φR(ρ),R( . ∪ {	L = N})
νL

φR(ρ),R(	L = N)
(106)

and the fact that (64) and (65) imply

− 1

L
logνL

φR(ρ),R(	L = N) = h(πL,N , νL
φR(ρ),R) → sgcan(ρ) − scan(ρ). (107)

Furthermore, Corollary 1 implies that

lim
L→∞

1

L
logπL,N (.) = lim

L→∞
1

L
logπL,N( . ∩ (X0

L,N ∪ X1
L,N )), (108)

and therefore we get

lim
L→∞

1

L
logπL,N (	

bg

L = SL) = sgcan(ρ) − scan(ρ)

+ lim
L→∞

1

L
logνφR(ρ),R(ηL = N − SL)

+ lim
L→∞

1

L
logνL−1

φR(ρ),R(	L−1 = SL,η1, . . . , ηL−1 ≤ (N − SL) ∧ R). (109)

For the last two terms we have fixed the maximum to be on site L, since the corresponding
polynomial correction vanishes on the logarithmic scale in the limit. With the definition of
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the single site measure (8) the second last term is given by

lim
L→∞

1

L
logνφR(ρ),R(ηL = N − SL)

=
{

(ρ − ρbg) log(φgcan(ρ)/c0), ρbg ≥ ρ − a

(ρ − ρbg) log(φgcan(ρ)/c1) − a log(c0/c1), ρbg ≤ ρ − a,
(110)

where (cf. (16))

φgcan(ρ) := lim
L→∞

φR(ρ) =
{

φ∞(ρ) = c0ρ/(1 + ρ), ρ ≤ ρc

c1, ρ ≥ ρc.
(111)

Due to the condition η1, . . . , ηL−1 ≤ (N −SL)∧R in the last term, which follows from (108)
and (103), all configurations in that event have the same probability and we get

lim
L→∞

1

L
logνL−1

φR(ρ),R(	L−1 = SL,η1, . . . , ηL−1 ≤ (N − SL) ∧ R)

= lim
L→∞

1

L
log

(
(φR(ρ)/c0)

SL

zR(φR(ρ))L−1
|X̃0

L−1,SL
|
)

= ρbg log
φgcan(ρ)

c0
− p(φgcan(ρ)) + χ(ρbg)

= (ρbg − ρ) logφgcan(ρ) − sgcan(ρ) + sfluid(ρbg), (112)

where

X̃0
L−1,SL

= {η ∈ XL−1,SL
|η1, . . . , ηL−1 ≤ (N − SL) ∧ R}. (113)

Due to the more restrictive condition this is only a subset of X0
L−1,SL

, but completely analo-
gously to Lemma 1 one can show that as L → ∞

1

L
log |X̃0

L−1,SL
| → (1 + ρbg) log(1 + ρbg) − ρbg logρbg = χ(ρbg). (114)

Inserting (110) and (112) into (109) finishes the proof. �

Figure 4 shows that the distribution of 	
bg

L concentrates on values of the order ρL for
ρ < ρtrans and on values of the order ρcL for ρ > ρtrans. These two cases correspond to the
phases F/C and C/F , respectively, and have been identified already in the previous section.
But in Fig. 4 also the role of ρc +a can be identified. For ρ < ρc +a, the rate function Iρ(ρbg)

(104) has only one minimum Iρ(ρ) = 0, whereas for ρ > ρc + a it has an additional local
minimum at ρbg = ρc , i.e. the condensed phase becomes metastable. For ρ > ρtrans this local
minimum becomes the global one, and the fluid phase becomes metastable. For ρ = ρtrans

the rate function vanishes for both phases, but the finer analysis of Theorem 2 reveals that
the fluid phase is already metastable in this case.

By definition, the observable 	
bg

L (η) changes at most by ±1 during each jump of a parti-
cle. So the process (	

bg

L (η(t)))t≥0 is a one-dimensional simple random walk (or a birth-death
process) on {0,1, . . . ,N}, whose stationary large deviation rate function is Iρ . The minima
of this rate function correspond to the fluid phase for ρbg = ρ and the condensed phase for
ρbg = ρc . For finite L the system has two quasi-stationary distributions

πL,N (.|X0
L,N) and πL,N (.|X1

L,N ), (115)
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Fig. 4 The rate function Iρ(ρbg) for c0 = 2, c1 = 1, a = 0.5 and various values of ρ. For ρ > ρc + a the
function has a local minimum at ρbg = ρc , which becomes the global minimum for ρ > ρtrans

corresponding to the fluid and the condensed phase, respectively. Analogous to (81) we
define

π̃L,N = πL,N (.|X1
L,N ,L ∈ argmax)1,...,L−1. (116)

Proposition 3 In the limit L → ∞, N/L → ρ, we have for all ρ ≥ 0

h(πL,N (.|X0
L,N ), νL

φ∞(ρ),∞) → 0 and πL,N(.|X0
L,N ) → νφ∞(ρ),∞, (117)

and for all ρ ≥ ρc + a

H(π̃L,N , νL−1
c1,∞) → 0 and πL,N (.|X1

L,N ) → νc1,∞. (118)

In both cases the second convergence is weakly with respect to bounded cylinder test func-
tions.

As in Theorem 4, we can show convergence in total relative entropy (118) for the con-
densed phase, which is much stronger than convergence in specific relative entropy (see
comments in the previous section).

Proof The first statements in (117) and (118) can be proved analogous to Theorem 3 and
Theorem 4, respectively. Since

πL,N (η|X0
L,N ) = πL,N(η)

πL,N (X0
L,N )

1X0
L,N

(η) = 1

|X0
L,N |1X0

L,N
(η) (119)

is the uniform measure on X0
L,N , we get for (117) analogous to (73)

h(πL,N (.|X0
L,N ), νL

φ∞(ρ),∞)

= 1

L

∑
η∈X0

L,N

πL,N (η|X0
L,N ) log

z∞(φ∞(ρ))L

(φ∞(ρ)/c0)N |X0
L,N |

= pfluid(φ∞(ρ)) − N

L
log

φ∞(ρ)

c0
− 1

L
log |X0

L,N |
→ sfluid(ρ) + ρ log c0 − χ(ρ) = 0 as L → ∞ (120)
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for all ρ ≥ 0, using Lemma 1. Note that here we are a priori restricted to X0
L,N so that there

is no error term as in (73).
The same holds for a modification of (88) to derive (118). Using

π̃L,N (η̂) = πL,N(η̂,N − 	L−1(η̂))

πL,N (argmax = L,X1
L,N )

1argmax=L,X1
L,N

(η̂,N − 	L−1(η̂))

= L(c0/c1)
−	L−1(η̂)−Rc−N

1

πL,N(X1
L,N )ZL,N

1argmax=L,X1
L,N

(η̂,N − 	L−1(η̂)) (121)

and πL,N (X1
L,N ) → 1, we get in direct analogy to the proof of Theorem 4

H(π̃L,N , νL−1
c1,∞) =

∑
η̂∈X̂0

L−1

π̃L,N (η̂) log
L(c0/c1)

−Rc−N
1 z∞(c1)

L−1

πL,N (X1
L,N )ZL,N

=

= πL,N (X1
L,N ) log(1 + o(1)) → 0 as L → ∞. (122)

The second statements in (117) and (118) follow completely analogously to the proofs
of Theorem 3 and Theorem 4. �

With Theorems 3 and 4 both statements of Proposition 3 follow directly from Corollary 1
and Theorem 2, but only for ρ < ρtrans and ρ ≥ ρtrans, respectively, where the quasi-stationary
distributions converge to the stationary distribution.

For finite L, both phases have life-times of the order ∼ eξ(ρ)L exponential in the system
size for all ρ > ρc + a, where the exponential rate ξ(ρ) depends on the density. It can be
calculated using the hitting times

τ fluid
L (ρ) := inf

{
t ≥ 0 | max

x∈�L

ηx(t) > R
}
,

τ cond
L (ρ) := inf

{
t ≥ 0 | max

x∈�L

ηx(t) ≤ R
}
,

(123)

which depend on the initial configuration as well as the time evolution. Due to the effective
one-dimensional random walk picture mentioned above, the quasi-stationary expectations of
these random variables are determined by the rate functions at the locations of local minima
and maxima. These are

Iρ(ρ) = scan(ρ) − sfluid(ρ) (min.)

Iρ(ρ − a) = scan(ρ) − sfluid(ρ − a) + a log c0 (max.) (124)

Iρ(ρc) = scan(ρ) − sfluid(ρc) + a log
c0

c1
+ (ρ − ρc) log c1 (min.),

where the last two are only defined for ρ > ρc + a (cf. Fig. 4). Note that Iρ(ρ) = 0 for
ρ ≤ ρc, whereas Iρ(ρc) = 0 for ρ ≥ ρc. For ρ > ρc + a we then have

ξfluid(ρ) := lim
L→∞

1

L
log � τ fluid

L (ρ) �πL,N (.|X0
L,N

),eLt = Iρ(ρ − a) − Iρ(ρ)

= sfluid(ρ) − sfluid(ρ − a) + a log c0,
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Fig. 5 Life-times of fluid and condensed phase for c0 = 2, c1 = 1, a = 0.5. Top: The exponential rate
ξ(ρ) of the life-time as a function of the density. × and � denote Monte Carlo data, errors are of the size
of the symbols. Bottom left: Expected life-times as used in (125) in a logarithmic plot as a function of L

for ρ = ρtrans. Bottom right: Tail distribution of the normalized lifetimes τ cond
L

(ρtrans)/ � τ cond
L

(ρtrans) �,
compared with the tail of an Exp(1) random variable

ξ cond(ρ) := lim
L→∞

1

L
log � τ cond

L (ρ) �πL,N (.|X1
L,N

),eLt = Iρ(ρ − a) − Iρ(ρc)

= sfluid(ρc) − sfluid(ρ − a) + (ρc + a − ρ) log c1, (125)

where � .. �πL,N (.|X0
L,N

),eLt denotes the average with respect to a quasi-stationary initial

distribution and the time evolution given by the generator L (4). Note that for ρ < ρc + a,
ξfluid(ρ) = ∞ and ξcond(ρ) is not defined, since the condensed phase is not stable. The as-
ymptotic behaviour as ρ → ∞ is given by

ξfluid(ρ) 
 log
1 + ρ

1 + ρ − a
→ 0

ξ cond(ρ) 
 ρ log
c0

c1
− log(1 + ρ − a) + const. → ∞.

(126)

For all a > 0 we have ξfluid(ρc +a) > 0 = ξ cond(ρc +a) and ξfluid(ρtrans) = ξ cond(ρtrans), as
expected. This behaviour is illustrated in Fig. 5 for some specific values of the parameters.
The predictions are in very good agreement with data from Monte Carlo simulations, a few
of which are presented in the figure. On the bottom left for ρ = ρtrans we see that the expected
lifetimes for the condensed phase are larger than for the fluid phase, which is in accordance
with Theorem 2. There appears to be a polynomial correction in the condensed phase, but
the data are not good enough to measure the power in L.
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Note that the last part of the derivation in this section is not rigorous, since strictly speak-
ing (	

bg

L (η(t)))t≥0 is not a Markov process. Still one could use a potential theoretic approach
analogous to [3], to show rigorously that the average life times of both phases are exponen-
tial in L. However, getting the right timescale with this approach would require quite some
technical effort. Besides the exponential growth rate of the life times with the system size
L, simulations also indicate that the distribution of the lifetimes is actually exponential, as
can be seen in Fig. 5 on the bottom right. This is to be expected, since the system effectively
jumps between the two metastable phases in a Markovian way.

6 Dependence on the Number of Particles

In this section we consider the case where the jump rates depend on the number of particles
in the system rather than the lattice size, which is also the case in some models for gran-
ular clustering [4, 23], one of our main motivations for this study. We modify our original
model (2),

gR(k) =
{

c0, k ≤ R

c1, k > R
for k ≥ 1, g(0) = 0, (127)

where R is now a function of the number of particles 	L(η). For simplicity we concentrate
on the specific choice R = a	L(η) with a ∈ [0,1), since a ≥ 1 is not interesting for this
model. So in principle, the jump rates do not only depend on the local occupation number
but on the global configuration. But restricted to a subset XL,N with fixed particle number
	L(η) = N , R is just a parameter, the process is well defined and standard results on sta-
tionary measures apply. Therefore the canonical measures are well defined as in (28). In
particular, Theorems 1 to 4 still hold and the proofs apply directly, where a should be re-
placed by aρ, since now R/L → ρa. So analogous to (35) the transition density ρtrans is
determined by the relation

a = (
sfluid(ρc) − (ρ − ρc) log c1 − sfluid(ρ)

)/(
ρ log

c0

c1

)
, (128)

and sfluid is given as in (24). The canonical entropy density scan is still given by (33), but the
contribution of the condensate, which determines the behaviour for large ρ, is now given by

scond(ρ,ρc) = −ρ

(
a log

c0

c1
+ log c1

)
+ ρc log c1. (129)

This leads to

scan(ρ) =
{

sfluid(ρ), ρ ≤ ρtrans

sfluid(ρc) − ρ(a log c0
c1

+ log c1) + ρc log c1, ρ > ρtrans.
(130)

To study the equivalence of ensembles, one has to define the grand-canonical measures.
This is not as straightforward as in (8), since the number of particles 	L(η) and thus R is
now a random variable. However, we know that the set of all stationary measures is convex,
and the extremal points are the canonical measures (see e.g. [22] or [16]). So the grand-
canonical measures can be defined as convex combinations of canonical measures,

νL
φ,R(η) =

∏
x∈�L

wL
R(ηx)φ

ηx

/ ∞∑
N=0

φNZL,N . (131)
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If the weights wR(k) depended only on the system size L, this would be equivalent to (8),
but here the measures are obviously not of product form since the weights depend on the
total number of particles through R = a	L(η). Also the normalizing partition function

ZR(φ) :=
∞∑

N=0

φNZL,N (132)

does not factorize, since now ZL,N = wL
aN(XL,N). Nevertheless we can define the pressure

pgcan(φ) := lim
L→∞

1

L
log

∞∑
N=0

φNZL,N , (133)

and by a saddle point argument analogous to the proof of Theorem 1 this is well defined and
given by

pgcan(φ) = sup
ρ≥0

(ρ logφ + scan(ρ)), (134)

the Legendre transform of the negative canonical entropy density (130). With (129) we have
for ρ > ρtrans

ρ logφ + scan(ρ) = ρ

(
logφ − a log

c0

c1
− log c1

)
+ ρc log c1, (135)

which, analogously to (25), implies

pgcan(φ) =
{

pfluid(φ), φ < φc(a)

∞, φ ≥ φc(a).
(136)

The difference is that now the pressure is finite up to

φc(a) := c1

(
c0

c1

)a

≥ c1, (137)

which is strictly bigger than the value c1 in (25) for all a ∈ (0,1). Note that for φ = φc(a)

the saddle point argument (134) does not apply and (133) diverges, so pgcan(φc(a)) = ∞,
see Fig. 6 left. As a consequence of (136), the critical density defined as in (14) is now
a-dependent and given by

ρc(a) := ρ∞(φc(a)) = c1−a
1

c1−a
0 − c1−a

1

, (138)

where ρ∞ is still given by (12). So analogous to (26), the grand-canonical entropy density
is given by the negative Legendre transform of (136),

sgcan(ρ) =
{

sfluid(ρ), ρ ≤ ρc(a)

sfluid(ρc(a)) − (ρ − ρc(a)) logφc(a), ρ > ρc(a).
(139)

By definition, this is again the concave hull of scan(ρ), as can be seen in Fig. 6, right. The
canonical entropy density is calculated numerically using (62) for different values of L and
N , and as before the results agree very well with the predictions.
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Fig. 6 Pressure and entropies for a = 0.2, c0 = 2 and c1 = 1 as given in (136), (130) and (139). Data points
are calculated numerically according to (62) with L = 100 (×), 200 (+), 400 (♦), and show good agreement
with the theoretical predictions for the thermodynamic limit

Fig. 7 Stationary phase diagram
of the process (127) for c0 = 2,
c1 = 1. The phases F(E), F/C

and C/F are defined in Sect. 2,
F(E) and F/C overlap (shaded
region) and phase F is empty

As in the original model, the case a = 0 leads to a continuous phase transition and this
line of the phase diagram is identical to Fig. 1. But for all a ∈ (0,1), ρc(a) > ρc(0), which
is the value in (14) for the original model. So the phase region F(E) in the phase diagram
is larger than in the original model (see Fig. 7). To complete the phase diagram, we have to
derive the analogue of the transition line ρc +a, which we call ρmeta in the following. This is
defined by the emergence of a metastable condensed phase, characterized by a second local
maximum of the rate function Iρ(ρbg) in Theorem 5. The proof of this theorem makes use of
the grand-canonical measures, and since these are now of different form, it does not apply
directly. However, with some effort the proof can be written purely in terms of canonical
measures (not shown here), and so the result (105) still applies, of course with a replaced
by ρa. An analysis similar to Sect. 5 reveals that the rate function has an additional local
minimum

Iρ(ρc(0)) for ρ > ρmeta = ρc(0)

1 − a
. (140)

So there exists a metastable condensed phase with background density ρc(0), which is still
the same as in the previous model, independent of a. This is to be expected, since the outflow
of the condensate site has to match the background current. A simple heuristic argument
along these lines provides a general framework to understand the transition, and is presented
in detail in [18]. Note that in comparison with (138),

ρmeta(a) ≤ ρc(a) for all a ∈ [0,1), (141)
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with equality if and only if a = 0. This follows immediately from the elementary inequality
x1−a −1 ≤ (1−a)(x −1). So the phase regions F(E) and F/C as defined in Sect. 2 overlap
(see shaded region in Fig. 7), and the region F is empty. In contrast to our previous model,
the equivalence of ensembles still holds in the presence of a metastable condensed phase.

7 Discussion

7.1 Differences to Previous Results

In the following we discuss differences in the condensation transition between zero-range
processes with and without size-dependence in the jump rates. To simplify matters we con-
centrate on the rates (2) for L-dependent jump rates, but the features we discuss should hold
in general.

− Without L-dependence the condensation transition in zero-range processes is continuous,
i.e. the background density ρbg is a continuous function of the total particle density ρ. For
model (2) this is only true if a = 0, for a > 0 the background density ρbg = ρc < ρtrans is
smaller than the transition density and the transition is discontinuous.

− If the jump rates do not depend on L, the equivalence of ensembles holds for all densities,
and for ρ ≥ ρc the entropy density is linear in ρ which is often characterized as partial
equivalence of ensembles [8, 31]. The reason is that the contribution of the condensate to
the entropy density vanishes as L → ∞. In model (2) this contribution does not vanish,
cf. Theorem 1, and therefore we have only equivalence of ensembles for ρ ≤ ρc and non-
equivalence for larger densities. As a consequence of this, the canonical entropy density
is non-concave, whereas it is concave in case of no L-dependence.

− Another striking feature of model (2) is that it exhibits ergodicity breaking, i.e. for ρ >

ρc +a there are two phases, fluid and condensed, with life-times exponential in L, one of
which is metastable depending on the density. Without L-dependence in the jump rates
this does not occur, and for all densities there is only one stable phase, either fluid for
ρ ≤ ρc or condensed for ρ > ρc.

So far a discontinuous transition in a zero-range process has only been observed heuris-
tically in a two-species system where the stationary state is not known [15]. The above
features only concern the stationary measure, and for systems without L-depen dence they
have been shown rigorously in a general context [16]. In the following we comment on fur-
ther differences regarding equilibration and stationary dynamics, which have been studied
only heuristically so far.

− If we prepare a system without L-dependence in a homogeneous distribution with density
ρ > ρc it exhibits coarsening [13, 17]. Initially, clusters form all over the lattice, and as
time progresses the larger cluster sites gain particles on the expense of the smaller cluster,
leading to a self-similar time evolution. The driving force for this behaviour is the fact
that there is no stable fluid phase with density ρ > ρc . This is not the case in model (2),
which does not exhibit coarsening for that reason. Instead, it takes a time of order eξfluidL

before the condensate appears.
− In a similar setting metastability has been reported as a precursor of the coarsening

regime, i.e. before coarsening to a single condensate sets in [20]. Unlike in the present
case, heuristic theoretical analysis supported by Monte-Carlo simulation shows that the
life time of these metastable configurations does not grow exponentially with system
size.
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− For systems without L-dependence, in the condensed phase the distribution of the homo-
geneous background has a sub-exponential tail [16]. In connection to this, the stationary
time scale for movement of the condensate location (once a single condensate has build
up) is also sub-exponential in L, as was found heuristically in [14] in case of a power
law. For model (2) the background distribution is just ν1

c1,∞(k) ∼ (c1/c0)
−k (see Theo-

rem 4), which has an exponential tail. Therefore condensates can move only by dissolv-
ing completely and, after a time of order eξfluidL in the coexisting fluid phase, forming on
a different site. So the time scale for the stationary motion of a condensate is exponential
in the system size.

The long time it takes to form a condensate in the present model is observed in Monte
Carlo simulations and is explained heuristically by a random walk picture in Sect. 5. The
time it takes for the transition between the phases depends on the specific model as well as
the definition of the phases. In any case its order is subexponential in the system size, and
for the model (2) it is actually of order L. Moreover, if ρ > ρc + na for n ≥ 1 also more
than one condensate is possible. But as can be seen in the proof of Theorem 1, the contri-
bution to the partition function of such a configuration is negligible. Therefore one typically
observes only one condensate, which is a common feature with the stationary behaviour of
a system without L-dependence, although both cases have very different life times. In [27]
a hydrodynamic theory is developed for the time evolution under Eulerian scaling above
the condensation threshold. This leads to a generic picture for the evolution of a space-
dependent initial density profile with total supercritical density in systems with rates that do
not depend on L. It would be interesting to study this problem in the present model.

Finally, we would also like to stress an intriguing difference to the usual theory of first
order phase transitions in statistical mechanics. In systems with finite local state space or
with bounded Hamiltonians, such as spin systems (Ising model) or exclusion models, the
pressure p is defined for all fugacities φ ≥ 0, and a first order phase transition is a result
of the pressure being non-analytic (see e.g. [25, 35]). In the model we studied here, the
pressure (25) is defined only for φ < c1, but is analytic on its domain. Therefore the phase
transition is a result of this bounded domain in connection with the conservation of the
particle number, and cannot be understood by studying the grand-canonical measures alone.
This is in contrast to previously studied systems without L-dependent jump rates, where
the presence of condensation can be characterized by a closed domain of the pressure p

(cf. [16]).

7.2 Summary

In this paper we presented a rigorous analysis of a discontinuous phase transition in a sim-
ple zero-range process with size-dependent jump rates. The model acts as a prototype for
systems with that feature and the results are expected to be qualitatively similar for a large
class of models. This will be discussed in detail in a forthcoming publication [18]. Going
beyond earlier heuristic discussions of the phase transition in terms of the order parameter
[4, 7, 23], our analysis provides a detailed picture of the phase transition in terms of the
entire ensemble. In particular we note that our approach is a pure equilibrium description,
based as in the work of [4, 23] on the notion of thermally activated processes. Hence there is
no need for an appeal [7] to a non-equilibrium dissipative structure, maintained by a flux of
entropy, for understanding the nature of the condensation transition in the granular shaking
experiment.

Since our results only concern the stationary distribution they do not depend on the geom-
etry or dimension of the lattice. The model shows the same features observed in granular
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clustering, namely metastability and a first order transition. The only difference is that there
is no region in the phase diagram where the fluid phase becomes unstable. This is due to the
simple choice of rates in this first analysis, and the issue will be addressed in [18].
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Appendix

A.1 Proof of Proposition 2

For ρ > ρc (22) follows by convergence of the probability generating function

pgf ∑
ηx/L(s) = 〈sηx/L〉L

ν1
φR,R

=
(

zR(φRs1/L)

zR(φR)

)L



(

c0 − φR

c0 − φRs1/L

)L

×
(

R + 1 + sa(ρ − ρc)

R + 1 + ρ − ρc

)L

→ sρc exp

(
(sa − 1)

ρ − ρc

a

)
as L → ∞. (142)

A.2 Proof of Lemma 1

Each configuration in XL,N \ X0
L,N has at least one site with more than R particles and we

denote the number of such sites by

E(η) :=
∑
x∈�L

1ηx>R(η). (143)

Note that for η ∈ XL,N \ X0
L,N we have

1 ≤ E(η) ≤ M = �N/R�, (144)

where M is as defined in (31). For each configuration we define

S(η) := (ηx ∧ R|x∈�L) ∪ (ηx − R|x∈�L,ηx>R) ∈ XL+E(η),N . (145)

If E(S(η)) > 0, we have to repeat this mapping at most M times such that

η̄ := SM(η) ∈ X0
L+l(η),N , (146)

where l(η) ≤ M denotes the total number of extra coordinates. For l(η) < M we can identify
η̄ by a configuration in X0

L+M,N , by setting all remaining coordinates equal to zero. By this
construction it is clear that for each η ∈ XL,N \ X0

L,N there exists a unique η̄ ∈ X0
L+M,N , i.e.

|XL,N \ X0
L,N | = |XL,N | − |X0

L,N | ≤ |X0
L+M,N |. (147)
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Further, each η̄ has the special property that at least l(η) sites contain exactly R particles,
and there are only L sites whose occupation number can be less or equal than that. Therefore
we can improve the above estimate as

|XL,N | − |X0
L,N | ≤

(
L + M

M

)
|X0

L,N−R| ≤
(

L + M

M

) |X0
L,N |

(L − M)R
, (148)

where the combinatorial factor counts the number of positions of sites with R particles. We
also used the fact that for all k = 1, . . . ,R

|X0
L,N−k+1| ≥ (L − M)|X0

L,N−k|, (149)

since there are at least L − M positions to put an additional particle without violating the
constraint ηx ≤ R for all x. Together with the obvious fact that |X0

L,N | ≤ |XL,N |, this proves
the first statement of the lemma, i.e.

1

1 + (
L+M

M

)
/(L − M)R

|XL,N | ≤ |X0
L,N | ≤ |XL,N |. (150)

With Stirling’s formula we get

lim
L→∞

1

L
log

(
L + M

L

)
= lim

L→∞

((
1 + M

L

)
log

(
1 + M

L

)
− M

L
log

M

L

)
= 0. (151)

since M/L → 0 as L → ∞. Therefore

1

L
log

1

1 + (
L+M

M

)
/(L − M)R

→ 0 (152)

and (150) certainly includes the second statement of the lemma. More detailed, we get to
leading order as L → ∞, N/L → ρ,

(
L+M

M

)
(L − M)R

=
(

R + ρ

ρ

)ρL/R+1/2(
1 + ρ

R

)L
L−R−1/2

√
2π

(1 + o(1)). (153)

This vanishes for all ρ ≥ 0 if

R logL − ρL

R
logR � logR ∨ ρL

R
as L → ∞, (154)

which is certainly the case for R � √
L.
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